
ACM Reference Format
Müller, M., Chentanez, N., Kim, T. 2013. Real Time Dynamic Fracture with Volumetric Approximate Convex 
Decompositions. ACM Trans. Graph. 32, 4, Article 115 (July 2013), 10 pages. 
DOI = 10.1145/2461912.2461934 http://doi.acm.org/10.1145/2461912.2461934.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted 
without fee provided that copies are not made or distributed for profi t or commercial advantage and that 
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned 
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
Copyright © ACM 0730-0301/13/07-ART115 $15.00.
DOI: http://doi.acm.org/10.1145/2461912.2461934

Real Time Dynamic Fracture
with Volumetric Approximate Convex Decompositions

Matthias Müller Nuttapong Chentanez Tae-Yong Kim

NVIDIA

Figure 1: Destruction of a Roman arena with 1m vertices and 500k faces. The simulation runs at over 30 fps including rigid body simulation,
dust simulation and rendering until the end of the sequence where the original mesh is split up into 20k separate pieces.

Abstract

We propose a new fast, robust and controllable method to simulate
the dynamic destruction of large and complex objects in real time.
The common method for fracture simulation in computer games is
to pre-fracture models and replace objects by their pre-computed
parts at run-time. This popular method is computationally cheap
but has the disadvantages that the fracture pattern does not align
with the impact location and that the number of hierarchical frac-
ture levels is fixed. Our method allows dynamic fracturing of large
objects into an unlimited number of pieces fast enough to be used
in computer games. We represent visual meshes by volumetric ap-
proximate convex decompositions (VACD) and apply user-defined
fracture patterns dependent on the impact location. The method
supports partial fracturing meaning that fracture patterns can be ap-
plied locally at multiple locations of an object. We propose new
methods for computing a VACD, for approximate convex hull con-
struction and for detecting islands in the convex decomposition af-
ter partial destruction in order to determine support structures.
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ometry and Object Modeling—Physically Based Modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual Reality
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Links: DL PDF

1 Introduction

Destruction effects such as exploding buildings, shattering glass or
the destruction of objects in a scene are becoming common in to-
day’s computer games. Such effects add significantly to the immer-
sive experience of the player. To achieve real-time performance,
game assets are typically pre-fractured during authoring time. Dur-
ing game play, when fracturing occurs, the original models are then
simply replaced by their pre-fractured counterparts. This static
method has been used successfully in many popular games due to
its simplicity. However, pre-fracturing often requires careful prepa-
ration of the assets to control the amount and location of destruction
within each object. In addition, to allow for repeated destruction of
object pieces, artists have to provide a hierarchy of fracture lev-
els. The increased authoring time can become a major bottleneck
in game production because even without considering destruction
the creation and preparation of game assets already constitutes a
major part of cost and time in game development. In addition, each
time the asset’s geometry is changed during game development, the
pre-fracturing step has to be repeated.
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A major drawback of the static pre-fracturing approach is that there
is no way to align fracture patterns with the impact location at run
time. When a gamer shoots at a glass window, she expects the
spider-web-shaped fracture pattern to be centered around the loca-
tion where the bullet hit the glass as shown in Figure 5. Anything
else clearly destroys the illusion of true fracturing. The only way
to get the desired behavior is to generate the fracture pieces dy-
namically. Dynamic fracture has been largely avoided in computer
games due to the additional complexity and computational cost.
However, besides creating more interesting, non-repeating fracture
behavior, dynamic fracture also significantly reduces model prepa-
ration time. With the method we propose in this paper, artists only
have to prepare a set of generic fracture patterns which can then be
assigned to a variety of assets instead of decomposing each model
individually.

The idea of using generic fracture patterns and applying them at
the impact location at run-time was recently proposed by Su et al.
[2009]. In this context, a fracture pattern is a pre-computed decom-
position of space, typically a large, pre-fractured block. This pat-
tern is then applied to objects by performing boolean operations. Su
et al. use a level set-based approach to apply the fracture pattern to a
given object. However, in order to get sharp edges and resolve thin
features, high resolution background grids are needed which slow
down the simulation and increase the memory footprint, making the
method impractical for the destruction of large scale environments
in computer games.

We propose a set of new methods that allow dynamic massive de-
struction of large models in real time for the first time – to the best
of our knowledge. Although our method is inspired by Su et al.’s
work a variety of new ideas were necessary to develop a framework
for dynamic fracturing specifically targeted at computer games.

It is important to distinguish between general real time simulations
in which all of the compute power is dedicated to the simulation it-
self and games in which physical simulations only get a small frac-
tion of computation time. The scene shown in Figure 1 belongs to
the first category. This is mostly due to rendering and rigid body
simulation. While the cost of these grows linearly with the com-
plexity of the scene, the fracturing cost depends only on the size of
the single object to be fractured which makes our method suitable
for both, real time simulations and the use in computer games.

The key idea behind our approach is to represent the visual geome-
try as compounds of convex shapes, where each convex shape con-
tains a unique part of the visual mesh. The decomposition of the
model allows us to apply fracture patterns locally at low cost be-
cause only a small set of the convex shapes is typically affected
by the operation. Su et al. noted that the boolean operations re-
quired to apply fracture patterns could be performed on the meshes
directly but indicated that such operations would be complicated to
implement robustly. Our decomposition allows us to perform the
boolean operations directly on the geometry in a fast and robust
way, enabling us to fracture highly detailed large scale meshes in
real time.

We generate these decompositions using our novel Volumetric Ap-
proximate Convex Decomposition (VACD) algorithm and provide
methods to fracture them in real time. In contrast to the approx-
imate convex decomposition of surfaces often used for collision
detection in games [Mamou and Ghorbel 2009], VACD splits the
volume enclosed by a mesh into non-overlapping, touching convex
regions [Lien and Amato 2007], [Tharp et al. 2012]. Our method
leverages this property to assign visual geometry uniquely to the
convex regions and to perform fast marching on the decomposi-
tion to determine the support structure of a partially fractured ob-
ject. It is important to note that in contrast to pre-fracturing, the

pre-computed convex decomposition is independent of the fracture
pattern exposed at real-time. Our main contributions include

• A robust method to fracture VACDs with pre-defined frac-
ture patterns which supports applying fracture patterns locally
multiple times in different places.

• A method to determine the support structure of a partially
fractured model.

• A method for computing a VACD of a visual mesh based on
the Voronoi decomposition of space. This method allows user
control by manipulating the locations of the Voronoi nodes.

• A fast method for the approximation of a convex hull.

• A generalization of VACDs to support initially overlapping
sub-meshes.

2 Related Work

Terzopoulos et al. [1988] and Norton et al. [1991] were among
the first to propose fracture models specifically designed for com-
puter graphics. O’Brien et al. [1999] and Smith et al. [2001] fo-
cussed specifically on brittle and later on ductile fracture [O’Brien
et al. 2002] as well. While Norton et al. used a mass-spring model
and Smith et al. point masses connected with distance constraints,
the other methods are based on continuum mechanics to compute
internal stresses and to determine fracture propagation directions.
Müller et al. [2001] and Bao et al. [2007] perform a static analysis
only when an object is hit and simulate the objects as rigid bodies
between fracture events. Although stress analysis generates more
physically correct fracture behavior, we deliberately chose to use
a geometric, pattern-based approach due to its controllability and
speed. Pauly et al. [2005] devised a method for crack initiation and
propagation based on a mesh-less discretization of objects. Zheng
et al. [2010] synthesize sounds of dynamic fracture events via a
quasi-static stress analysis.

Recently, Parker et al. [2009] proposed a fracture framework tar-
geted at computer games. They use relatively coarse tetrahedral
meshes that fracture only along tetrahedral boundaries. To hide
the coarse discretization they use so-called splinters associated with
each element to re-introduce geometric detail. Glondu et al. [2012]
compute damped deformation waves based on modal analysis to
estimate crack initiation. They also propose a crack propagation
algorithm that is fast enough to be used in real time applications.

In addition to the cost of stress analysis and crack propagation, cut-
ting the visual meshes along with the physical model puts another
burden on the destruction system. Efficient and arbitrary cutting of
general meshes remains a challenge. A variety of papers have fo-
cused on mesh cutting in connection with deformable objects such
as thin shells [Kaufmann et al. 2009] [Turkiyyah et al. 2009], tetra-
hedralized volumetric objects [Sifakis et al. 2007] and meshless
models [Steinemann et al. 2006]. Arbitrary cutting of meshes often
introduces numerical instabilities due to sliver shapes. One way to
alleviate this problem is to use separate meshes for simulation and
rendering [Molino et al. 2005] [Sifakis et al. 2007]. We perform
simulation and fracturing on proxies, the convex shapes, each of
which contains a small part of the visual mesh.

As mentioned before, pre-fracturing is a popular approach used
both in the gaming and the movie industry. Various methods have
been proposed to split objects in to pieces. They include manual
cutting of the geometry by artists, image guidance [Mould 2005],
Voronoi fracturing of the surface [Raghavachary 2002] or solid
[Baker et al. 2011], tetrahedralization [Parker and O’Brien 2009],
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Figure 2: Overview of the fracture algorithm. Left: The fracture pattern (red) is aligned with the impact location (black dot). Middle: All
convex pieces are intersected with all cells. The green convex pieces can be welded to form a single piece because they cover the entire
cell. Pieces within one cell become a new compound (coloring). Island detection finds that the dark red compound needs to be split. Right:
Partial fracture. Pieces completely outside the impact sphere (orange) are not cut. All orange pieces plus the split pieces outside the impact
sphere (yellow) form one new compound.

BSP trees [Naylor et al. 1990] [Baker et al. 2011] or applying crack
patterns created by simulations [Iben and O’Brien 2006].

Exact convex decomposition (ECD) of polyhedra is a well stud-
ied problem in computational geometry. It is NP-hard for two di-
mensional polygons with holes and for polyhedra [Lien and Amato
2006]. However for many computer graphics applications, approx-
imate decompositions are often good enough. For example, for col-
lision handling it is sufficient to decompose the surface of objects
into convex regions that are allowed to overlap [Liu et al. 2008].
The most popular approach for surface decomposition is probably
the hierarchical method of Mamou [2009]. However, for our pur-
pose, we need a volumetric decomposition of a mesh into a non-
overlapping convex covering of the underlying visual geometry. To
our knowledge, the only method proposed to create such a decom-
position is the recursive top-down approach by [Lien and Amato
2007]. They create the volumetric decomposition by recursively
splitting the given mesh along a plane that minimizes the concavity
of both sub-meshes. Their approach is fully automatic, but prone
to producing inaccurate solutions. Again, our aim is to give the
artist more control over the process. Our method allows the artist
to guide the decomposition by manipulating Voronoi nodes in an
intuitive way.

The basic building block of the VACD algorithm is the creation of
an approximate convex hull (ACH) for a piece of the visual mesh. A
simple and robust way to create such an approximate hull is to use
k-dops, i.e. to create the hull from a reduced set of planes with pre-
defined normal directions. Kavan [2006] proposed a fast method
to tightly fit planes with given normals. Our method also fits a
reduced set of planes to create the ACH but determines the normal
directions based on the input. This way, the resulting hull fits the
input geometry more tightly with a given number of planes.

3 Fracture Simulation

We first describe the simplest case in which we use only one mesh
to perform the fracture operations, to handle collisions and for vi-
sualization.

3.1 The Basic Method

The meshes we work with have the following properties (Fig. 3):

Figure 3: The basic algorithm in 2d. Compounds are composed
of a set of convex pieces that do not overlap. Connected pieces
share co-planar faces. For smooth shading each piece stores one
normal per vertex and face. Multiple normals per vertex are needed
to render sharp edges.

Figure 4: The basic algorithm in 3d. The decomposition of the
initial compound mesh does not become visible when a fracture
patterns is applied.

(a) They are composed of convex pieces.

(b) The pieces do not overlap.

(c) Two pieces are physically connected iff one piece has at least
one face that (partially) overlaps a face of the other piece and
the two faces lie in the same plane with opposite normals.

Meshes created via volumetric approximate convex decomposition
meet these requirements by design. In what follows we use the term
compound for such meshes. We will illustrate the steps of the frac-
ture algorithm with the compound shown in Figures 3 and 4. It ap-
proximates the shape of a torus. To let the outside appear rounded,
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we assign a normal to each vertex of each face. This normal is only
used for visualization.

As mentioned in the introduction, our fracture algorithm is based
on the concept of fracture patterns. A fracture pattern is a decom-
position of all of space into convex pieces. To avoid ambiguity we
call the convex pieces of the fracture pattern cells and use the term
convex for the convex components of the compounds. We use de-
compositions of a large axis-aligned box centered at the origin as
fracture patterns. This way we do not have to handle the special
cases of open cells. Our method does not depend on how a fracture
pattern is generated. The only requirements we impose on its shape
are that the impact is located at the origin and that all cells are con-
vex. For the glass window examples shown in Figure 5 we created
a spider-web-shaped pattern procedurally while we used Voronoi
decomposition with decreasing node density away from the origin
for all other scenes.

A key idea of our fracture method is to decompose objects into
convex pieces and to use convex fracture patterns cells. This way,
clipping a compound mesh against a fracture pattern yields convex
pieces that can be re-assembled to form new compounds. In de-
tail, to fracture a compound using a fracture pattern we perform the
following steps at the time of impact also illustrated in Figure 2:

1. Alignment: First we translate the fracture pattern such that its
origin aligns with the impact location. In addition to transla-
tion, arbitrary additional transformations can be applied to the
pattern at this point as long as the origin is kept fixed and the
cells convex.

2. Intersection: Next, we compute the intersections of all cells
with all convexes. Any acceleration data structure used for
convex - convex collision detection can be used to speed up
the identification of overlapping cell-convex pairs. To com-
pute the intersection of a single cell with a single convex, we
clip the convex against all the planes of the cell one by one and
not vice versa. This way, each clip plane creates new vertices
on the edges of the partially clipped convex for which the in-
terpolation of vertex attributes such as normals is straight for-
ward. At the end of this step, we have a set of new convexes
with new normals for rendering and each convex belongs to
exactly one cell.

3. Welding: As an effective optimization step, we identify
pieces that are completely covered with new convexes and re-
place these new convexes with one convex that has the shape
of the piece. For this test, we compare the pre-computed vol-
ume of the cell with the sum of the volumes of all the convexes
assigned to it. The pre-computed volume has to be scaled by
the determinant of the pattern deformation matrix if the latter
is not a rigid transformation.

4. Compound formation: Next, all the convexes belonging to
one cell are combined to form a new compound. To support
fracture patterns with non-convex pieces, a fracture pattern
can be equipped with a coloring of its cells. If such a coloring
is provided, we group all the new convexes belonging not to a
single cell but to all cells of the same color to form one new
compound.

5. Island detection: One last step is necessary to complete the
fracture operation. It is possible that the previous step created
compounds of two ore more disconnected islands of convexes.
In order to avoid having disconnected fracture pieces moving
as a single object, we detect disjoint islands and create indi-
vidual compounds for them.

The last step is crucial. It is this step that makes sure that objects
collapse in the correct way. For large objects it is essential to have

a fast method for island detection to avoid frame rate drops. There-
fore, the method we propose for this step is one of our core contri-
butions.

To identify separate connected components we perform a flood fill
on a newly created compound. The main challenge here is to iden-
tify the neighbor structure of its convexes. One method to identify
neighbors would be to perform a convex-convex collision detection
pass as we do for applying fracture patterns. However, while the
application of a fracture pattern is a local operation in case of par-
tial fracture, island detection is a global problem. Therefore, having
a more efficient method is crucial. The technique we propose lever-
ages property (c) of compounds. We first create a list with entries
for all the faces of all the convexes of the compound. Each en-
try contains a link to the convex and the absolute value |d| of the
plane equation n ·x+d = 0 of the face. After sorting by the value
|d|, entries with identical values (up to a numerical epsilon) can be
identified during a single pass through the list. For each matching
pair, we check whether property (c) holds. To compute the amount
of overlap s ∈ [0,1], we project the faces into their common plane
and perform a planar convex-convex intersection. In addition to the
connectivity test, s can be used for glass rendering. In the scene
shown in Figure 5, we only render faces for which s < 1 to let the
glass appear intact outside the impact radius.

3.2 Partial Fracture

When the basic fracture method described above is applied to a
large mesh, an object is fractured along all the cells of the fracture
pattern at once, independent of how far the cells are from the im-
pact location as in the center image of Figure 2. One way to keep
destruction local is to divide the cells of the fracture pattern into far
cells which are outside a give impact sphere and near cells. When
all the far cells are given the same color, they stay connected af-
ter the fracture operation. However, with this method, convexes
are still clipped against the far cells. In order to speed the process
up, we do not cut convexes that lie completely outside the impact
sphere (orange in Figure 2 right) but integrate them as they are into
one compound with the convexes that are outside the impact sphere
but within a close cell (yellow in Figure 2 right). This optimization
step is particularly important in connection with large meshes and
explicit visual geometry as discussed in the next section. Figure 5
shows a typical use case of partial fracture.

3.3 Separate Visual Meshes

The basic method can already handle a variety of interesting sce-
narios in games such as the destruction of glass windows or objects
with simple geometry such as cylindrical columns. For objects with
more complex shapes, working with their meshes directly is not
practical. For this case we use two separate meshes, a compound
with the properties stated in Section 4.3 and a visual mesh for ren-
dering. In Section 4 we will describe ways to create a compound for
a given visual mesh. We require each convex to contain at most one
manifold, watertight connected visual mesh that lies completely in-
side the convex. We call the convexes without visual mesh internal
convexes and all others surface convexes. Internal convexes are han-
dled as described in Section 4.3. For surface convexes we perform
the additional sub-steps when clipping against a cell of the fracture
pattern as shown in Figure 8 (c) and (d):

(a) Mesh clipping: If the new convex lies completely inside the
visual mesh, it becomes an internal convex. Otherwise a new
visual mesh is created by clipping the visual mesh of the par
ent convex against the new convex.

(b) Island detection: Mesh clipping can generate more than one
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Figure 5: A glass window is fractured locally multiple times. Our method makes sure the region outside the impact radii stays connected and
the faces of the convexes in that region hidden.

Figure 6: Impact-based fracture triggering. Approximately 600 compounds and 800 convexes are created during the simulation.

Figure 7: The arena after serious destruction resulting in 20k compounds and 32k convexes. Throughout the simulation, the fracture time
stays below 50ms.
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(a) (b)

(c) (d)

Figure 8: Separate fracture and rendering meshes. (a): A com-
pound mesh is created from a visual mesh (gray) via VACD. Inter-
active placement of Voronoi nodes provides intuitive control. (b):
The mesh is split along the Voronoi cell boundaries and an approx-
imate convex hull created for each sub-mesh. (c): At runtime a
convex is fractured using a fracture pattern (red). (d): Each new
convex is fit to the visual sub-mesh it owns. In the left-most cell two
islands are detected and two new convexes created (light blue).

connected visual mesh within a new convex. Therefore we per-
form island detection on the visual mesh and create separate
new convexes if necessary. Here island detection is simple and
fast because the visual mesh provides connectivity information.

(c) Re-fit: In general, after the previous steps, a new surface con-
vex does not tightly enclose its visual mesh. Therefore, we
re-compute the shape of the convex based on its visual mesh
using the algorithm described in Section 4.2

Note that step (b) can potentially create overlapping convex pieces.
This can happen because we allow the visual mesh to be concave
within a convex. Overlapping pieces are only problematic if they
end up in different compounds. In this case, the rigid body engine
generates small separation impulse. We have not seen any disturb-
ing artifacts in our test scenes due to this rare event.

Mesh clipping is the most complex step in the fracture algorithm
and writing numerically stable code is far from trivial. The key
decision that made our code robust was to work with general po-
tentially non-convex polygonal faces instead of restricting the im-
plementation to triangle meshes. Permanent triangulation of polyg-
onal intersections of the visual mesh with cell boundaries creates a
rapidly increasing number of ill-shaped triangles as shown in Figure
9. Of course, the polygonal approach can still fail due to numeri-
cal errors. In this case which we found to happen quite rarely, we
simply remove the corresponding convex from the simulation. It
should be noted that mesh clipping not just clips the given mesh
against a cell but also creates geometry on the cell faces such that
the mesh becomes watertight.

Figure 9: The importance of working with polygons instead of tri-
angles. The figure shows a hexagon split twice using general polyg-
onal faces (top) and triangular faces only (bottom). In the latter
case, many ill shaped triangles are created even after only two cuts.

4 Mesh Preparation

As described in the previous sections, our fracture algorithm works
on compound meshes, not on visual meshes directly. Therefore we
have to create the compound mesh for a given visual mesh as a pre-
processing step. We would like to emphasize again that this mesh
preparation step is different from pre-fracturing models because it
is independent of the fracture pattern used at runtime.

4.1 Voronoi-Based VACD

As input we expect a manifold and watertight polygonal mesh. Our
VACD method is based on the Voronoi decomposition of space. It
comprises the following steps (see Figures 8 (a) and (b)).

1. Node placement First, the user places nodes on the mesh.

2. Voronoi decomposition Given the nodes we compute the
Voronoi decomposition of the bounding box of the mesh re-
sulting in a set of convex shapes.

3. Mesh clipping Next we clip the mesh against the Voronoi
cells as described in Section 3.3.

4. Island detection As mentioned in Section 3.3 each cell can
potentially contain multiple mutually disconnected meshes. If
this is the case, one convex is created for each sub-mesh.

5. Convex fitting As a last step, the convexes are reshaped to
fit the enclosed visual mesh tightly using the method we will
describe in Section 4.2.

Figure 10 shows the application of this procedure to a complex
dragon model. A nice property of the method is that it works for
meshes of any topology whereas traditional VACD methods need
to treat meshes of genus one and higher in a special way. At the
end we have a compound mesh and manifold watertight meshes per
convex as required by the runtime fracture algorithm. An advantage
of pre-clipping the original mesh is that for very large models, only
local operations have to be performed at run time when a model
is fractured locally. Another advantage is improved stability. Our
VACD implementation uses double precision computation to avoid
numerical problems with large meshes. However, at runtime we are
restricted to use single precision. Since each convex contains a rel-
atively small part of the visual mesh which we center at the origin,
single precision is sufficient to handle most configurations stably.

The fact that our method only takes a fraction of a second to decom-
pose a mesh of 10-100k triangles allows the user to interactively
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Figure 10: Volumetric Approximate Convex Decomposition of a dragon model with 40k vertices and 80k triangles. Placing twelve nodes
intuitively in a matter of seconds results in an tight fitting decomposition that makes fracturing this high resolution mesh possible in real time.
From left to right: Original model, compound mesh, one split mesh per convex (shrunk for visualization) and destruction of the model at
runtime.

(a) (b)

(c) (d)

Figure 11: Approximate convex hull algorithm. (a): initial convex.
(b): incremental volume maximizing convex hull. (c): clipping of
the initial convex using the plane directions. (d): clipping with fixed
plane directions.

manipulate the nodes while getting immediate visual feedback. We
found that manual node placement and manipulation is fast even
for complex models such as the dragon. However, if required, the
algorithm above can be turned into a fully automatic decomposition
method. What is needed is a way to procedurally place the nodes
which is one direction of future work.

4.2 Approximate Convex Hull

At runtime as well as during off-line mesh decomposition, convexes
have to be re-fitted to enclose a visual mesh tightly. The tightest fit
would be to use the convex hull of the mesh. However, typically
the convex hull of a detailed visual mesh contains a large number of

faces and vertices slowing down both collision handling and further
fracture operations. What we need is an approximate convex hull.
The hull needs to satisfy the following constraints:

• It needs to enclose all the vertices of the visual mesh

• It must not overlap any other convexes of the compound

• Connected convexes must share co-planar faces.

In both the off-line and runtime case we already have a convex
shape that meets all these constraints before re-fitting. A natural
way to make the given convex tighter and not violate any of the
above constraints is to choose a direction, move a plane perpendic-
ular to this direction from the outside towards the convex until it
hits a visual vertex and then clip the convex against this plane. At
runtime where re-fitting needs to be fast we let the user choose be-
tween AABB, 14-dop and 26-dop fitting. For AABB fitting we use
the following directions and their negatives 1

0
0

 0
1
0

 0
0
1

 . (1)

In case of 14-dop fitting we additionally uses the following direc-
tions and their negatives: 1

1
1

 −1
1
1

 1
−1
1

 1
1
−1

 . (2)

For 26-dop fitting the following directions and their negatives are
used as well: 0

1
1

 0
−1
1

 1
0
1

 1
0
−1

 1
1
0

 −1
1
0

 . (3)

At run time, re-fitting is only used locally where a model is frac-
tured. In contrast, re-fitting during mesh preparation yields the ini-
tial approximation of the entire visual mesh which is used for both
fracturing and collision handling. Therefore, tighter fits are more
essential.
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For this purpose we propose a new method to choose the fit direc-
tions (see Figure 11). The basic idea is to apply the incremental
convex hull algorithm [Kallay 1984] to the visual mesh and stop af-
ter a given number of included vertices. We then use the normals of
the faces of this intermediate hull as fitting directions. What makes
our algorithm effective is the order in which we process visual ver-
tices. We do this in a greedy manner to optimize the volume of the
intermediate convex. Algorithm 1 describes the procedure in more
detail, where v1, ..vn are the vertices of the visual mesh and f1, .., fm
the faces of the current convex hull. The function vol(vi, f j) returns
the volume of the tetrahedron formed by vertex vi and face f j. A
face f j is visible from vertex vi if vol(vi, f j)≥ 0.

begin
C←{argmaxvi

vi.x};
C←C ∪{argmaxvi

length(C∪ vi)};
C←C ∪{argmaxvi

area(C∪ vi)};
C←C ∪{argmaxvi

volume(C∪ vi)};
createConvex(C);
foreach vi /∈C do

Vi = ∑ j max(vol(vi, f j),0)
end
while |C|< N do

k← argmaxi Vi;
C←C ∪{vk};
updateConvex(vk);
foreach vi /∈C do

Vi←Vi−∑ f jremoved max(vol(vi, f j),0)
Vi←Vi +∑ f jadded max(vol(vi, f j),0)

end
end

end
Algorithm 1: Volume Maximizing Approximate Convex Hull

The procedures createConvex() and updateConvex() are the ones
used in the traditional incremental convex hull algorithm. The key
idea is to have each vertex vi store the volume Vi it would add to the
current convex if it was included. As mentioned above, the Vi can
also be used for visibility tests needed in the base algorithm.

The algorithm can also be used outside of our context to compute
a tight approximate convex hull that encloses all the vertices of a
given mesh. One would simply start with the bounding box of the
mesh. A nice property of the algorithm is that it converges to the
true convex hull as the number of included vertices approaches the
number of mesh vertices while the volume of the approximation
converges towards the volume of the convex hull from above. So-
lutions using a fixed set of directions such as [Kavan et al. 2006] do
not have this property.

4.3 Initial Convex Overlaps

Large objects such as the arena shown in Figure 1 and schemati-
cally in Figure 12 are typically not modeled as one connected water
tight mesh. An artist would rather model each column as well as
the roof as separate meshes. To simplify the pre-processing step
we therefore relax the requirements for the initial compound mesh.
Each convex still has to contain at most one connected manifold
and watertight visual mesh but convexes and their visual meshes
are allowed to overlap.

With this relaxation, the VACD algorithm iterating through all sub-
meshes immediately finds the decomposition shown in Figure 12(a)
even without any nodes and a simple AABB fit whereas finding an

(a) (b)

Figure 12: The concept of ghost convexes. (a): We allow con-
vex overlaps in the initial VACD so artists do not have to weld
sub-meshes of large connected models into one manifold water-
tight mesh. (b): Initially, ghost convexes with negative volume and
inward pointing normals (red) are created for each intersection.
These are treated as regular convexes in the fracture process and
ensure both correct volume computations and connectivity via co-
planar faces.

appropriate VACD for the combined mesh would require the place-
ment of at least two nodes (to split the roof from the columns, the
columns would still be split into separate convexes by island detec-
tion).

However, with overlapping convexes, two problems are introduced.

• In the welding step of the fracture algorithm we sum up the
volumes of all convexes belonging to one cell and compare
the sum with the volume of the cell. This test yields incorrect
results near overlaps.

• It is important to require that two overlapping convexes are
connected structurally otherwise they fly apart violently as
soon as the simulation starts due to their mutual penetration.
However, property (c) of compounds does not guarantee this.
For instance, the two overlapping convexes shown in Figure
12 (b) do not have a pair of co-planar faces and would there-
fore end up in two different pieces.

We solve both problems at once by introducing ghost convexes. For
each pair of overlapping convexes we create one ghost convex with
the shape of their intersection (which is guaranteed to be convex).
In contrast to regular convexes, ghost convexes are never rendered,
have negative volumes and inward pointing face normals. Figure
12(b) shows how a ghost convex (red) solves the volume and con-
nectivity problem. First, the sum of the volumes of the three con-
vexes equals the volume of the compound mesh. Second, the green
convex and the ghost convex have co-planar faces with opposite
normals. The same is true for the blue convex and the ghost convex
so the ghost convex connects the two original convexes.

Note that this is not true for a convex that lies completely inside
another one. This is not an issue because such a configuration is
not meaningful in our context. Multiple overlaps could be handled
by testing for overlapping ghost convexes and introducing another
level of them with positive volume. We have not investigated this
generalization further because simple overlap handling was suffi-
cient in all the models we used.

5 Results

To measure the effectiveness of Algorithm 1 to compute approxi-
mate convex hulls we tested it on the bunny mesh shown in Figure
6. The mesh contains 6k vertices and 11k faces with 645 vertices on
the convex hull. Starting with the AABB of the mesh and including
4 and 6 vertices already produces a hull that has approximately the
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Figure 13: Volume of the approximate convex hull of a bunny mesh
with 6k vertices and 11k faces computed with Algorithm 1 (red).
The approximate hull using 4 and 6 vertices fits the mesh as tightly
as a 14-dop and the 26-dop hull, respectively. Including 20 ver-
tices yields a volume only 5 percent larger than the true convex hull
containing 645 vertices of the original mesh.
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Figure 14: Fracture times (ms) per fracture event (not frame) at the
beginning of the arena destruction sequence.

same volume as a 14-dop and a 26-dop fit, respectively as Figure
13 shows. With 20 vertices included, the resulting hull’s volume is
only five percent larger than the volume of the true convex hull.

We used an Intel Core i7 CPU at 3.07 GHz and an NVIDIA
GeForce GTX 680 for all our simulations shown in the paper. As
mentioned earlier, the frame rates in our examples are determined
by rendering, rigid body simulation and dust simulation, typically
using about 15, 45 and 40 percent of the computation time, respec-
tively. The table in Figure 14 lists the fracture times at the be-
ginning of the arena destruction scene shown in Figures 1 and 7
and the accompanying video. The time to fracture small to average
sized objects is typically negligible, i.e. below 10 ms. Fracturing is
most expensive when large buildings like the center stand with the
temple are hit for the first time but still below 50ms throughout the
simulation. A way to reduce performance hits further would be to
distribute the fracture calculations over multiple time steps which
is part of future work.

For our simulations we used the rigid body simulator of [Tonge
et al. 2012] which runs completely in parallel on the GPU. For in-
creased realism, we added a dust and debris simulation. After a
fracture event, we identify the faces that became exposed. We then
generate debris and dust particles uniformly on those faces with a
user specified sampling density and ratio. To stabilize the solver, we
do not create true rigid bodies below a certain size. The sizes of the
debris particles cover the range below this threshold. Each debris
particles is rendered by instancing one of a set of pre-defined visual
meshes and simulated as a spheres with high angular damping to
prevent unrealistic rolling on the ground.

For the simulation of dust we adapted the method of [Pfaff et al.
2010] adding additional orientation information to each particle.
The orientation is used to add small scale turbulence effects to the

coarse, grid based fluid simulation. Dust particles are rendered as
rotating point sprites showing the small scale swirl of the flow.

6 Conclusion and Future Work

We have presented a novel method for the dynamic destruction of
complex objects that is fast enough to be used in computer games.
The basic idea is to represent visual meshes with a compound mesh
of convex primitives which we compute using our new volumetric
approximate convex decomposition technique. Applying a fracture
pattern composed of convex cells to a compound mesh yields con-
vex pieces that can be reassembled to form new compounds. A ba-
sic operation for mesh pre-processing and re-fitting convexes at run
time is the computation of an approximate convex hull for which we
have devised an effective technique that can be used in other con-
texts as well. We have demonstrated the efficiency of the fracture
method in a variety of complex scenarios.

Using a purely geometric method, our results are typically not as
physically accurate as those of stress-based methods. This, how-
ever, is not always the case. For common scenarios like the shat-
tering of a window as shown in Figure 5, tens of thousands of fi-
nite elements would be needed to get the clean, sharp edged spider
web, more than can be handled in real time. We chose the geomet-
ric, pattern-based approach because it is fast, still provides enough
flexibility and because game developers like to have as much con-
trol as possible. Some artists are even reluctant to go from static to
dynamic fracture due to the loss of precise control.

We have implemented collision based fracture triggering as shown
in Figure 6 but so far, structures do not fracture under their own
weight. Also, in nature, objects do not necessarily fracture at the
impact location only. Both problems can be solved by performing a
simplified stress analysis on the connectivity graph of a compound
– a problem we will study as future work. In our examples, we have
applied the same fracture pattern independent of the strength of the
impact. This is not a limitation of our method in principle. One
could pre-compute a variety of patterns and select them as well as
the impact radius for partial fracture dependent on the impact force.
Another line of future work is the extension of our method to handle
ductile fracture. One idea to do this would be to re-assemble the
convex pieces into new compounds after fracture only after a few
steps of simulating them as separate bodies giving them time to
change their relative poses. Turning our VACD algorithm into an
automatic method is another interesting problem although we found
that doing it manually is efficient and gives the user a high level of
control to create a decomposition that optimally fits the scenario in
a game.
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